
JOURNAL OF MATERIALS SCIENCE 12 (1977) 1 9 5 5 - 1 9 6 0  

Creep in chipboard 
Part 1 Fitting 3- and 4-element response curves to creep data 

C. B. PIE RCE, J. M. D INWOODIE 
Building Research Establishment, Princes Risborough Laboratory, Princes Risborough, 
Aylesbury, Bucks, UK 

3- and 4-element spring and dashpot models have frequently been applied to the behaviour 
of some visco-elastic materials, although somewhat less frequently to wood and wood- 
based sheet materials which are themselves visco-elastic. However there exists a need to 
develop a good analytical procedure for fitting the non-linear response curves correspond- 
ing to these models to experimental data. This paper describes such a metho.d and applies 
it to the data from a creep experiment on UF chipboard bending specimens under 
sustained three-point loading. The computer program written for the solution process 
illustrates the response curves on a graph plot. 

1. I n t r o d u c t i o n  
There are many physical and environmental situ- 
ations where an imbalance may be created in what 
was previously a steady-state condition. An exter- 
nal stimulus may be applied to a system in equilib- 
rium, and over a period of time the system will 
adapt itself to its new boundary conditions and 
settle down into a new equilibrium state. 

Many of these time-dependent situations occur 
in building research. For instance, problems occur 
in predicting the passage of heat or moisture 
through external walls of  buildings, and in pre- 
dicting the percentage uptake of preservatives into 
timber; these are examples of diffusion processes 
which involve a physical passage of energy, gas or 
liquid from one region to another. Further ex- 
amples of these self-equilibrating systems occur in 
the field of structures, where the work done by 
loads on an element or structure is distributed 
throughout the structure as strain energy. The 
extent to which this redistribution of energy is 
time-dependent varies with different materials. 

Duration of loading is one of the most import- 
ant factors affecting the strength and deformation 
of timber and timber products; it is of interest not 
only to practising engineers, but also to physicists 
and material scientists who are interested in the 
problem as one aspect of the behaviour of ma- 

terials. With the passage of time the load which a 
timber member can sustain will decrease progress- 
ively, and for a given load the deformation wilt in- 
crease. Thus timber and timber products can be 
considered neither as truly elastic materials, in 
which stress is proportional to strain, but indepen- 
dent of rate of strain; nor as truly viscous liquids, 
where stress is proportional to rate of strain, but 
independent of strain itself. Rather they possess a 
combination of these states and like concrete, 
bitumen and many polymers are referred to as 
visco-elastic materials. 

Fig. 1 illustrates the characteristic deformation- 
time relationship for a piece of timber under a sus- 
tained load where the applied stress is not great 
enough to initiate early failure, as well as the ex- 
istence and interaction of the various components 
comprising the total deformation. On the appli- 
cation of a load at time zero, an instantaneous and 
completely reversible deformation occurs which 
represents elastic behaviour. On maintaining the 
load to time t l ,  the deformation increases, though 
at an ever-decreasing rate; this increment is known 
as creep. On removal of the load at time tl an in- 
stantaneous recovery occurs which is approx- 
imately equal in magnitude to the initial elastic 
deformation. With time, the remaining defor- 
mation will decrease at an ever-decreasing rate 
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Figure 1 The various elastic and plastic components of the deformation of timber under constant load. 

until time t2 when it becomes constant. The 
amount of creep that has occurred during loading 
can be conveniently split into a recoverable com- 
ponent, which displays delayed elastic behaviour, 
and an irrecoverable component which is due to 
plastic or viscous flow. 

2. Rheological models 
Visco-elastic behaviour of this type has been rep- 
resented by various spring and dashpot analogues 
in which the  spring simulates the elastic com- 
ponent and the dashpot the plastic or viscous com- 
ponent. A number of springs and dashpots are 
usually combined in the model; two of the more 
common linear models having three and four 
elements are illustrated in Fig. 2. The following 
equations giving the deformation Y in terms of the 
time t and material constants of the components 
have been derived for these two models (see for 
example Flugge [ 1 ] ): 
(a) for the 3-element model 

o + o l - - e x p  - -  (1) 

(b) for the 4-element model 

o + O [ l _ e x p  (--tE2]]+ ot  (2) 

The first term on the right hand side represents the 
elastic deformation and is associated with the 

spring constant E1 (see Fig. 2); the second term, 
which is time-dependent, represents the delayed 
elastic or recoverable creep component and is 
associated with the combined effects of the spring 
constant E2 and the dashpot damping coefficient 
r/2. The third term in Equation 2 represents the 
flow component or irrecoverable creep and is 
associated with dashpot constant ~13. As t tends to 
infinity the 3-element model tends towards con- 
stant deformation, whereas the 4-element model 
tends towards a constant and positive rate of 
deformation. 

While such analogues have been used quite fre- 
quently to represent creep in polymers they have 
been applied only infrequently in the represen- 
tation of creep in timber or timber products 
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Figure 2 3- and 4- element spring and dashpot analogues. 

1956 



(Kollman [2], Pentoney [3], Ylinen [4], Szabo 
and Ifju [5], Senft and Suddarth [6], and 
Ganowicz and Kwiatowski [7]. Furthermore 
there have been few instances in any field where 
the theoretical Equations 1 and 2 have been fitted 
to experimental data. Of the above research 
workers, only Szabo and Ifju [5] and Senft and 
Suddarth [6] have attempted the task. The former 
workers investigating the creep of small yellow 
poplar beams adopted the 4-element rheological 
model to describe creep behaviour; their method 
of curve-fitting involved a combination of differ- 
ent techniques: all but one of the coefficients were 
determined by experimental and graphical methods 
involving a certain degree of subjectivity, with the 
final coefficient being found by a computer iter- 
ation process. 

Senft and Suddarth, in investigating the creep 
of samples of Sitka spruce loaded in compression 
along the grain, fitted equations for both the 3- 
and the 4-element models using an iterative solu- 
tion process based on an existing computer pro- 
gram. Full details of the method of curve fitting 
are missing from their article, but it would appear 
that the process involves only the random selec- 
tion and evaluation of different parameters in 
order to obtain the best fit; no attempt was made 
at solving the equations mathematically. Their 
method may be criticized on the grounds that the 
calculated coefficients are not meaningful in them- 
selves but only when taken together in the form of 
Equation 1 or 2. The authors admit that coef- 
ficients calculated from different sets of data can- 
not be compared, since they are dependent upon 
the initial estimates fed into the program and the 
sequence of trials the computer goes through to 
obtain them. 

It is the object of this paper to describe an 
analytical procedure for fitting a creep curve for 
both the 3- and 4-element models. 

3. Method of solution 
Equation 1 may be rewritten as the statistical 
model 

Y = /31 '~/32 [ 1 --exp (--/33t)] -be (3) 

where /31 = o / E 1 ,  /32 = U/E2 and/33 =E2/r/2 are 
unknown parameters to be estimated. At a given 
time t the observation of the total deformation Y 
consists of the value/31 +/32 {1 - exp (-/33 t)} plus 
an amount e, the increment by which any individ- 
ual may depart from the fitted curve. Although it 
is not possible to find/31,/32 and/33 exactly with- 
out examining all possible occurrences of Y and t, 
the information provided by experiment may be 
used to find estimates hi, b2 and b3 0f/31 ,/32 and 
/33 respectively; then the predicted value of Y for a 
given t is given by 

= bt + b2{1 --exp (--b3t)}. 

Substituting a value of t into this equation pro- 
vides a prediction for the amount of deformation 
at that time. 

Similarly, Equation 2 may be rewritten as 

Y = /3, +/32{1--exp(-- /33t)}+/34t+e (4) 

where /34 = 0"/73 is the additional unknown par- 
ameter. 

A non-linear least-squares analysis has been 
used to estimate the vector of coefficients [3 in 
both models (see for example Draper and Smith 
[8]). Because of the exponential term in the 
equation for deformation, the solution of the 
least-squares equations involves an iterative pro- 
cedure on one parameter (/33). Since the 3-element 
solution may be obtained as a special case of the 4- 
element solution, only the latter will be derived 
here. 
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Figure 3 Behaviour of residual sum of squares S and its derivatives with respect to/3 3 in the immediate vicinity of/~3. 
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Let 
n 

S([31, [32,[33,[34) = 2 IYi - ~ 1  - [34 t i - - [32  [1 - -exp (-[3st3112 (5 )  
i=1 

be the residual sum of squares, where 1~ takes any arbitrary valued and (Yi ,  ti) is an observed data point. 
Define I~ to be the values which, when substituted into Equation 5 produce the least possible value of 

S. 
aS aS aS aS 

For S to be minimised, 0/~-̂ 1' o/J-̂ 2' a/33 and 0~4~ must all be zero. Then 

as  

a[31 

as  
= o  

at3~ 
aS 

a[32 
Also 

gives --22[Yi--~1--/~4ti--/~2{1--exp(--/~sti)}[ = 0 (6) 

gives - - 2 t i ~ . l Y i - { J l - - / ~ 4 t i - - ~ 2 { 1 - - e x p ( - - / ~ a t l ) } [  = 0 (7) 

gives --2(1 --exp { - -~s t i } )~ lY i  --~1 - - ~ 4 t , - / ~ z ( 1  - e x p  {-/~sti})l = 0 (S) 

aS 
- -  = --2[32 tl exp {--[33 t i } ~ l Y i  -- [31 - -  [~4 ti - -  ~2 (1 - -  exp {--!Ss ti})l 
a[3s 

Writing Zi = exp (--[33 ti) to simplify, we obtain Equations 10, 11, 12 and 13 below 

(9) 

Z Y i - - n ( ~ l  + ~ 2 ) - ~ 4 Z t i + [ J 2 Z Z i  . =  0 (10) 

~,Y i t i - - (~  , +~2)Zt i - -[J4Y,  t~ +~2~,t iZi  = 0 (11) 

EYi  -- EYiZi  -- ~, (n -- EZi)  -- ~4(Etl -- Et iZi )  -- ~2 (n -- 2ZZi  + ZZ?) = 0 

aS 
- -  = --2/32 I E YitiZi -- ([31 + [32)EtiZi -- [34 ~,t~ Z i + [32 Y'tiZ~l a[h 

(12) 

(13) 

Equations 10, 11, and 12 may be put into matrix form for solution of the least-squares equation in the 
usual way: 

r l[-  Yi n ~,tl (n -- ~,Zi) ' 

[ ~ Y i t  ] = Zti  Zt~ ( ~ t , -  z t i g i )  

LZri - z y i z i j  L(n -- EZi)  ( ~ , t i -  Zt iZi)  (n -- 2~-,Zi + ZZ~)  

/~4  �84 (14) 

Unfortunately Equation 13 cannot be included 
in this matrix representation since it is rton4inear 
in [3. Also, it may be seen that even the three 
equations which have been written in matrix form 
are dependent upon the value of [3a, since 
Zi = exp (--/3a ti). 

However, given an initial estimate b 3 for ~s 
Equations 14 can be solved to give estimates for 
[31,/3z and [34 for that value ofbs  ; this ensures that 

aS aS and aS a[3---[' a[3--~ ~ are all zero within computational 
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limits. On the other hand ~ calculated from 

Equation 13 is unlikely to be zero at this stage. 
An iteration procedure must be found which 

OS 
brings ~ closer to zero and hence brings b closer 

to the required least squares estimates ~. 
aS 

If ~ is zero and the value of the second de- 

a2S. 
rivative ~ is positive, a local minimum of S exists 

op~ 



with respect to/33 (see Fig. 3.) Newton's  method 

of  approximat ion to a root  presents a useful 

OS 
algorithm for the solution of  = 0. By guessing 

~/33 
an initial value b ~ a bet ter  approximation is given 

by 

where both  derivatives are evaluated at the point  

/33 = b ~ , and 

02S 
0/3~ - 2/32 [Ngi t{Zi  -- (/31 +/3:)Et?Zi  

-/342t~Zi + 2/322t]Z]]. 

(A geometrical interpretat ion of  Equation 15 may 

be found in Fig. 3.) This correction may be 
applied successively to improve the value o f  b3 
until it is arbitrarily close to/~3. After  each stage 

of  this i terat ion procedure,  Equations 14 are 

solved to obtain new values for b l ,  b2 and b4. 

~S 8S OS 
When b3 is very close to ~3, ___0B-~' ___013---~ and 0/34 are 

3S 
all zero within computat ional  limits w i t h -  

0/33 
arbitrarily small, and the estimates of  ~ are very 

close to i~. 

4. Application of method to typical creep 
problem 

Table I shows the t ime-de f l ec t ion  data from an 
experiment where a sample of  ureaformaldehyde 
chipboard was loaded under three-point bending at 
constant temperature (20 ~ C) and relative hu- 
midi ty  (65%), such that the  applied stress was 
equivalent to 60% of  the short-term value; failure 

of  the specimen occurred on the 46th day of  con- 
tinuous loading. The final deformation was twice 
the initial, i.e. the amount  o f  creep was similar to 
the initial elastic deformation.  

TAB LE I Time--deflection data from a chipboard bending specimen 

Time Deflection Time Deflection Time Deflection 
(min) (ram) (min) (mm) (min) (mm) 

2 3.85 357 4.53 24480 6.37 
3 3.88 417 4.56 28800 6.54 
5 3.93 477 4.59 30240 6.58 
7 3.96 1407 4.94 31680 6.62 
9 3.99 1657 4.99 33120 6.66 

11 4.01 1917 5.04 34560 6.70 
13 4.03 2880 5.20 38880 6.79 
15 4.04 3120 5.22 40320 6.79 
17 4.05 3360 5.26 41760 6.89 
22 4.08 4320 5.36 43200 6.93 
27 4.11 4560 5.38 44640 6.96 
32 4.13 4800 5.41 48960 7.09 
37 4.15 8640 5.70 50400 7.12 
42 4.17 9120 5.73 51840 7.16 
47 4.18 10080 5.78 53280 7.19 
57 4.21 10560 5.81 54720 7.23 
87 4.26 11520 5.85 56160 7.38 

117 4.32 12960 5.92 57600 7.44 
147 4.35 16200 6.09 59040 7.51 
177 4.38 20160 6.22 60480 7.56 
227 4.43 21600 6.27 61920 7.65 
297 4.48 23040 6.32 66240 Failed 

TABLE II Application of 3- and 4-element models to above data 

Model Estimated parameters Minimum Multiple 
residual SS correlation R ~ 

3-element 4.27 2.95 0.0000666 0 3.904 0.960 
4-element 4.09 1.34 0.000613 0.0000349 0.588 0.994 

1959 



8.0 

75 

70 

65 

6.0 

5.5 

50 

4.5 

4.0 

3.5 

30 

2.5 

2.0 
0 

I I I I I I I I L I I I 
4 8 12 16 20 24 28 32 36 40 44 48 

Time - m i n x  103 

Figure 4 3- and 4-element response curves fitted to creep data in Table I. 

A computer program has been written to calcu- 
late the least-squares estimates of the parameters 
of the 3- and 4-element models and also to pro- 
duce a plot of the two creep curves superimposed 
on the original data. When applied to the data of 
Table I the estimated parameters 13 are those 
shown in Table II, and the graphical representation 
is shown in Fig. 4. It may be seen that in this case 
the 4-element model fits the data much more 
closely than the simpler 3-element model and can 
account for 99% of the variation in the experimen- 
tal data. Although both multiple correlations are 
high at 0.960 and 0.994, the departures from a 
perfect fit (R 2 = 1) are 0.040 and 0.006 respect- 
ively which support the impression given by Fig. 4. 

The value of theological models of this type lies 
in the possibility of predicting long-term perform- 
ance from short-term investigation: the validity of 
such a procedure is currently being assessed as part 
of an extensive investigation of creep in chipboard, 
and the results will be presented in a later paper in 
this series. The values of the various coefficients 
will provide a quantitative comparison of the 
behaviour of different types of boards or a single 
type under varying conditions. It is likely that the 
values of 13 will also be affected by the level of 
applied stress and the span to depth ratio of the 
test specimens. 

5. Conclusion 
A method has been developed for fitting non- 
linear response curves corresponding to the 3- and 
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4-element spring and dashpot models to the behav- 
iour of a linear visco-elastic material which creeps 
under sustained loading. A least-squares approach 
has been used and because of the exponential term 
in the governing equations 3 and 4 for the two 
models the solution process is iterative. A com- 
puter program has been written to calculate the 
least squares estimates of the parameters 13, and it 
also illustrates the response curves on a plot such 
as that shown in Fig. 4. 
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